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The temporal evolution of small three-dimensional disturbances on viscous flows 
between parallel walls is studied. The initial-value problem is formally solved by 
using Fourier-Laplace transform techniques. The streamwise velocity component is 
obtained as the solution of a forced problem. As a consequence of the three-dimen- 
sionality, a resonant response is possible, leading to  algebraic growth for small times. 
It occurs when the eigenvalues of the Orr-Sommerfeld equation coincide with the 
eigenvalues of the homogeneous operator for the streaniwise velocity component. The 
resonance has been investigated numerically for plane Couette flow. The phase speed 
of the resonant waves equals the average mean velocity. The wavenumber combination 
that leads to the largest amplitude corresponds to structures highly elongated in the 
streaniwise direction. The maximum amplitude, and the time to reach this maximum, 
scale with the Reynolds number. The aspect ratio of the most rapidly growing wave 
increases with the Reynolds number, with its spanwise wavelength approaching a 
constant value of about 3 channel heights. 

1. Introduction 
The mechanisms that cause transition to turbulence in parallel shear flows are still 

not completely understood. A first step towards an understanding of this important 
problem has been the study of the development of small perturbations on a steady mean 
flow. The behaviour of such disturbances is generally analysed using properties of the 
most unstable eigenmode of the Orr-Sommerfeld equation. For the Blasius boundary 
layer and plane Poiseuille flow, calculations of spatial growth rates and the location 
of the neutral stability curve are in good agreement with the experimental results 
obtainedwithvibrating ribbon techniques (Ross et al. 1970; Nishioka, Iida & Ichikawa 
1975). Also, the initial stage of the temporal evolution of a three-dimensional 
disturbance in a laminar boundary layer is well accounted for by the least damped 
Orr-Sommerfeld mode (cf. Gaster 1975). 

If only two-dimensional disturbances are studied, the two velocity components can 
be obtained from a stream function that is determined from the Orr-Sommerfeld 
equation. I n  this case, this equation thus provides a complete description of the per- 
turbation flow field. When three-dimensional disturbances are considered, however, 
the relation between the velocity components becomes more complex. Then the 

t Present address : Department of Mechanics, Mechanical and Aerospace Engineering, 
Illinois Institute of Technology, Chicago, Illinois 60616. 

0022-1 120/80/4429-8770 $02.00 @ 1980 Cambridge University Press 



150 L. H .  Gwtavsson and L. S .  Hultgren 

streamwise perturbation velocity, u, is obtained from a forced problem where the 
vertical velocity, v,  and the perturbation pressure act as forcing terms. Since the 
pressure is linearly related to the vertical velocity, the forcing of the u component is 
given by the solutions of the Orr-Sommerfeld equation. The response can be deter- 
mined from the properties of the homogeneous operator of the u component. For 
bounded shear flows, it turns out that discrete eigensolutions exist. The eigenmodes 
correspond physically to motions without a v component and without horizontal 
pressure gradients. They can also be interpreted as vertical vorticity waves. As will be 
shown later, these waves are always exponentially damped. Were it not for the possi- 
bility of resonant driving, these modes would therefore be of little physical signifi- 
cance. The resonance occurs when an eigenvalue of the Orr-Sommerfeld equation 
coincides with an eigenvalue of the u mode. This leads to a linear growth of the u 
velocity for small times. Since the resonance can occur only for damped waves, the u 
component will eventually tend to zero. If the exponential damping rate is small, the 
maximum amplitude obtained will be large and will occur a t  a large time. 

The present paper is devoted primarily to a numerical study of the proposed reson- 
ance mechanism in plane Couette flow. The resonance problem is analytically formula- 
ted in terms of an initial value problem for a general bounded, parallel viscous shear 
flow. The corresponding initial value problem for boundary-layer flows is briefly dis- 
cussed. 

2. Analysis 

steady parallel flow are 
The non-dimensional equations governing the evolution of small perturbations on a 

- - -_ ap + 1 V2W) aw aw 
at ax a2 R 
-+u -  

au av aw 
- + - + - = 0, 
ax ay a2 

where (u, v ,  w ) , p  and [U(y), 0, 01 are the perturbation velocities, perturbation pressure 
and the mean velocity, respectively. R = U, S / w  is the Reynolds number, where U, is a 
characteristic velocity, S is the channel height and w is the kinematic viscosity. The 
prime denotes differentiation with respect to y and O2 is the Laplacian. 

The usual technique for analysing the problem defined above starts with the deriva- 
tion of a single equation for the vertical velocity component. From ( 1 )  and (2)) one 
obtains the following relation between the pressure and the vertical velocity: 

v2p = - 2utav/ax. (3) 

Elimination of the pressure bet,ween (1 b )  and (3) leads to the following equation for the 
v comnonent: 
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The boundary conditions for v are 

v = &/ay = 0 a t  y = 0 , l .  ( 5 )  

The classical Orr-Sommerfeld equation (cf. Lin 1955) can be obtained fronl (4) by 
using the normal-mode assumption. 

Once the v component is obtained, the pressure can be calculated from (3).  Alterna- 
tively, the pressure can be determined from the more convenient expression 

which has been obtained from ( l a ) ,  ( l h )  and (2).  Finally, the u component can be 
obtained as the solution to  the forced problem ( 1 a ) ,  and w can then be calculated from 
continuity. 

An illustrative picture of the driving mechanism is obtained if the forced problem is 
analysed in terms of the vertical vorticity component. The vorticity equation can be 
derived by applying the curl operator on (1). I n  particular, the y component of the 
vorticity, wy,  is governed by 

Since wy is not related to v, the term on the right-hand side acts as a source term for 
vertical vorticity. The effect of the source term has the following simple physical 
interpretation. 

The perturbation vertical velocity displaces fluid particles. These have streamwise 
velocities determined by the value of the mean flow at their height of origin. If the 
displacement has a spanwise variation, adjoining fluid particles will have different 
streamwise velocities and thus vertical vorticity will be created. Note that this is a 
truly three-dimensional phenomenon. For two-dimensional disturbances the y com- 
ponent of the vorticity equation i d  identically zero. 

For bounded shear flows, the homogeneous operator in (7) subject to 

w y = O  a t  y = O , 1  (8) 

have wave-like solutions. A resonant response is then possible if a Tollmien-Schlicht- 
ing wave has the same spatial and temporal behaviour as the free vertical vorticity 
wave. I n  that case, the vertical vorticity will grow linearly in time for small times. 

I n  constructing the formal solution to the forced problem, it is preferable to proceed 
in terms of the velocity components rather than the vertical vorticity since the former 
are directly measurable quantities. Formal expressions for u, v, w and p can be con- 
structed by using Fourier-Laplace transform techniques. The Fourier transform with 
respect to  the homogeneous co-ordinates x and z, and the Laplace transform with 
respect to  time are defined as 
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Transformation of (1 a), (4) and (6) yields 

D2$-- [k2+R(s+iaU)]$ = R(iaII + u'#-ao), 
(D2-k2)a$-R[(s+iaU) (D2-E2) q5-iaUnq5] = -RV2v0, 

(11)  

(12) 

(13) 

A 

1 
k2R 

TT = - {ID2 - k2 - R(s + iaU)]  Dq5 + R(DOo+ id '$)} ,  

where $, $ and I1 are the Fourier-Laplace transforms of u, v and p ,  respectively; 42, 
and 0, are the Fourier transforms of the initial conditions. D represents differentiation 
with respect to y and k2 = a 2 + / 3 2 .  The boundary conditions are 

$ = q 5 = D $ = O  at y=O,1. (14) 

Assume that the solution for $, and thereby also Il, is known. Equation (11)  can 
then be solved by the standard method of variation of parameters. After partial 
integrations, the expression for $ becomes 

where 
$ = Tl+T2+Ta, (15) 

Here $l and @z are the homogeneous solutions to ( 1  1) normalized such that their 
Wronskian equals unity; is the Fourier transform of the initial vorticity in the y 
direction. The second subscript in (19)-(21) indicates that the quantities are evalua.ted 
at either boundary. The Fourier-Laplace transformed vertical vorticity component 
can be expressed in terms of ( 16)-( 18) as 

For two-dimensional disturbances, the streamwise velocity is obtained directly from 
continuity. This is also evident in (15)-(18) since then Tl and T2 equal zero. When 
inverting the Laplace transform in the three-dimensional case, two distinct contribu- 
tions to thestreamwise velocity can beidentified. These are associated with the poles of 
$ and the poles determined by the roots of 

E(s;  u , P ,  R )  = 0 ;  (23) 

$ has simple poles in the complex s plane determined by the Orr-Sommerfeld eigen- 
value problem. The corresponding eigenmodes can be excited only by vertical 
motions. The roots to (23) are the eigenvalues of the homogeneous operator in ( 1 1 )  
subject to (14). Physically, these eigensolutions are pressureless motions in horizontal 
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x, x planes. Vertical vorticity disturbances exclusively excite these modes. For two- 
dimensional motion, these eigenmodes do not have any physical interpretation. In this 
case, pis  equal to zero and the roots to (23) do not lead to poles in $. 

A resonance phenomenon occurs if a root to (23) coincides with an Orr-Sommerfeld- 
type pole. The resulting double pole appears in T, and leads to a temporal behaviour of 
the form tesot, where so is the pole. Even if so corresponds to an exponentially damped 
wave, the disturbance grows linearly for small times. The maximum amplitude can 
become large if the wave is weakly damped. The study of this resonance is the main 
concern of the rest of this paper. 

3. The eigenvalue problems 

by studying the following two eigenvalue problems: 
The resonance phenomenon for three-dimensional disturbances can be investigated 

D2$ - [k’ + iaR( U - c ~ ) ]  $ = 0, (24) 

$ = O  a t  y = O , l ;  (25) 

(26) 

qb=D$=O a t  y = O , 1 .  (27) 

and 
(0’- k2)’$ - iaR[( U - cg) (0,- k2)  9 - U”$] = 0, 

Equation (24) is the homogeneous operator appearing in ( 1  1)  and (26) is the classical 
Orr-Sommerfeld equation. Resonant driving of the streamwise velocity, or, equiva- 
lently, the vertical vorticity, occurs when the eigenvalues c1 and c, coincide for a given 
wavenumber vector (a, /3) and Reynolds number. 

Equation (24) is mathematically equivalent to the equation describing the tem- 
perature modes for thermally stratified plane Couette flow (Davey & Reid 1977). 
Following these investigators, multiplication of (24) with the complex conjugate of $ 
followed by integration over the channel height leads to the following bounds for the 
real and imaginary parts of cl: 

Urnin < c1, < Urnax, (28) 

1 
C l i  < - --&(“2+7r2). (29) 

This shows that the vertical vorticity modes always are damped. Similar bounds for 
c2 can be found in Joseph (1969). 

Equation (24) can be simplified by the substitution 

c1 = C’ - ik2/aR 

D2$ - iaR( U - c’) 3 = 0. 
which transforms (24) into 

The eigenvalue c‘ depends only on aR. Once this dependency is known, c1 can be deter- 
mined for arbitrary combinations of a, p and R through (30). 

The eigenvalues to (24) and (26) must, in general, be obtained by using numerical 
techniques. Numerical results for plane Couette flow will be presented in the following 
section. 
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FIUURE 1. The relation between (a )  the real part and (b )  the imaginary part of the eigenvalue c’ 
and ccR for the first four modes. -, ci  = +; ---, ci  # t .  

The eigenvalues to (24) and (26) were obtained by numerical iteration. The Adams 
interpolation method (cf. Collatz 1960, p. 126) was used for the numerical integration 
of both equations. The eigenvalues were determined to six decimal places. 

The depencency of c’, defined in (31), on aR isshown in figure 1. The results agree with 
those obtained for the temperature mode by Davey & Reid (1977). In  figure 2, the 
eigenvalues c2 for the four least damped Orr-Sommerfeld modes are shown as a 
function of aR with k equal to 1. For k equal to 5, the corresponding results are shown 
in figure 3. The results agree with those presented by Gallagher (1974). As aR becomes 
smaller than a certain value, the phase velocities for both types of waves become H. 
The resonance is most likely to occur for aR smaller than this value. The numerical 
study was therefore then concentrated on waves with phase velocities equal to 8. 
However, a resonance for waves with other wave speeds cannot be completely ruled 
out. For the  case when c, equals 4, ci is shown as a function of aR, with k equal to 5, in 
figure 4. It is seen that the two types of modes have coinciding eigenvalues a t  two 
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FIGURE 2. The relation between ( a )  the real part and ( b )  the imaginary part of the eigenvalue c2 

and aR for the first four modes, k = 1. --, cZ7 = i; ---, %r # &. 

points (PI and Pz). Similar curves can be obtained for other values of k. The point PI 
was found always to correspond to the waves with the smallest exponential damping 
rate. These damping rates, normalized with R-I, are shown as a function of k in figure 
5. A perturbation analysis shows that aci R approaches - 4n2 as k tends to zero. It was 
found that a minimum in laci RI occurs for k approximately equal to 2. For a given 
Reynolds number, this minimum corresponds to the wavenumber combination for 
which the maximum amplitude of the resonant wave becomes the largest. The flatness 
of the minimum indicates that there is a wide range of wavenumber combinations with 
similar growth properties. In  table 1, the characteristic properties of the resonant 
waves at  Pl are given as a function of k. For R equal to 500, it  is noted that the resonant 
wavenumbers correspond to structures highly elongated in the streamwise direction. 
The eigenfunction xl, defined in (19), a t  the mode crossing point corresponding to 
maximum growth is shown in figure 6. 

The effect on the results of a change in the Reynolds number can be assessed by 
noting that both c1 and c2 depend only on aR and k. For a given k, the resonance will 
occur at  successively smaller a as R is increased. Since ci remains a constant, laci[ a t  



156 L. H .  Gustavsson and L. S. Hultgren 

1 .o 

0.5 

(Q) 
I 

_ _ _ _ _ _ _ _ _ -  
-______ ------- ___--- ,------ 

\'- - f 
,/--- 
\ -- . 

--------__ _ _ _ _ _  ---_ --------- - - _ _ _ _ _ _ _ _ _ _ _  

I 

0 

( b )  

'. .. - -- 
\ ----- ----- . '. - - 

----- 
--- -- --- -- . -.. 

--------- 

0.5 

$ 0.25 

500 
aR  

1000 

I 1 I 
0 500 1000 

olR 

FIGURE 3. The relation between (a) the real part and ( b )  the imaginary part of the eigenvalue c2 
and aR for the first four modes, k = 5 .  -, cZr = 3; ---, czr # 4. 

resonance decreases with increasing Reynolds number. I n  the limit R +m, th-3 
resonant growth of the disturbance is linear for all times. This result has recently been 
obtained by Landahl(l979, private communication) from considerations based on the 
streamwise averaged inviscid equations. Furthermore, the aspect ratio of the dis- 
turbance tends t o  infinity in this limit. However, the spanwise wavenumber exhibiting 
the fastest growth tends to  approximately 2, which corresponds to a spanwise wave- 
length of about 3 channel heights. 

5. Discussion 
The calculations of Gallagher & Mercer (1962, 1964), Davey (1973) and Gallagher 

(1974) very strongly indicate that the Tollmien-Schlichting waves in plane Couette 
flow are always damped. Therefore, the resonance mechanism presented here seems to  
be the only linear process which can produce growth of disturbances in this type of 
flow. I n  general, large amplitudes are obtained for structures highly elongated in the 
streamwise direction. Largely because of difficulties in establishing the mean flow, 
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k ctR mi R P/a 
( R  = 500) 

1 66.530 - 38.475 7.4486 
2 90.500 - 37.835 10.9921 
3 97.835 - 39'165 15.2993 
5 95.640 - 49.560 26.1206 
7 89.080 - 70.250 39.2778 

TABLE 1 .  Characteristic properties at the mode crossing point P,. 
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FIUURE 4. The relation between ci and aR when c, = 4, k = 5. The solid and dashed curves 
represent c1 and c2, respectively. 

experimental results are unfortunately not available which can be compared with this 
theoretical prediction. 

The initial linear growth may lead to amplitudes so large that nonlinear effects 
become important. One can, a t  this stage, only speculate about the nature of these 
nonlinearities. They may be in the form of secondary instabilities or generation of large 
scale secondary flows. Also, because of induced changes in the mean velocity profile, a 
detuning of the resonance is possible. 

Elongated structures have been found experimentally in other parallel flows. Such 
structures have been observed in the vicinity of turbulent spots in a laminar boundary 
layer (Elder 1960; Cantwell, Coles & Dimotakis 1978). The measurements of Wygnan- 
ski, Haritonidis & Kaplan (1979) showed that thin vertical shear layers are present at 
the wing tips of a turbulent spot. The observations of Komoda (1967) indicated that 
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FIGURE 5 .  Exponential damping ratios at  the resonance point Pl as a function of k. 
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FIGURE 6. The eigenfunction x1 at the mode crossing point PI, k = 2.  The solid and broken 
curves represent the amplitude and phaw distribution, respectively. 

such shear layers precede breakdown to turbulence. The similarity between the theore- 
tical predictions for plane Couette flow and the observed phenomena in boundary 
layers is striking. It is therefore of interest to assess whether a similar resonance 
mechanism, such as the one discussed in this paper, is also present in a laminar bound- 
ary layer. For this type offlow, numerical calculations indicate that wavelike solutions 
to the homogeneous operator in (7) exist. Resonant driving by Tollmien-Schlichting 
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waves is therefore plausible. Also, the transient part of the solution to the 
initial value problem for the vertical velocity component (Gustavsson 1979) causes a 
transient response in the vertical vorticity or, equivalently, in the horizontal 
velocities. Preliminary calculations show that in the limiting case of a equals zero, 
the streamwise velocity component grows linearly for small times. Eventually, 
viscous dissipation will become dominant and the disturbance decays. This indicates 
that a similar temporal behaviour, as discussed above for plane Couette flow, is also 
possible in a boundary layer. 

This study was supported by the Air Force Office of Scientific Research under Grant 
no. AFOSR 79-0006. 
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